29 research outputs found

    Design of Optimal Sparse Feedback Gains via the Alternating Direction Method of Multipliers

    Full text link
    We design sparse and block sparse feedback gains that minimize the variance amplification (i.e., the H2H_2 norm) of distributed systems. Our approach consists of two steps. First, we identify sparsity patterns of feedback gains by incorporating sparsity-promoting penalty functions into the optimal control problem, where the added terms penalize the number of communication links in the distributed controller. Second, we optimize feedback gains subject to structural constraints determined by the identified sparsity patterns. In the first step, the sparsity structure of feedback gains is identified using the alternating direction method of multipliers, which is a powerful algorithm well-suited to large optimization problems. This method alternates between promoting the sparsity of the controller and optimizing the closed-loop performance, which allows us to exploit the structure of the corresponding objective functions. In particular, we take advantage of the separability of the sparsity-promoting penalty functions to decompose the minimization problem into sub-problems that can be solved analytically. Several examples are provided to illustrate the effectiveness of the developed approach.Comment: To appear in IEEE Trans. Automat. Contro

    Optimal Control of Vehicular Formations With Nearest Neighbor Interactions

    Get PDF
    We consider the design of optimal localized feedback gains for one-dimensional formations in which vehicles only use information from their immediate neighbors. The control objective is to enhance coherence of the formation by making it behave like a rigid lattice. For the single-integrator model with symmetric gains, we establish convexity, implying that the globally optimal controller can be computed efficiently. We also identify a class of convex problems for double-integrators by restricting the controller to symmetric position and uniform diagonal velocity gains. To obtain the optimal non-symmetric gains for both the single- and the double-integrator models, we solve a parameterized family of optimal control problems ranging from an easily solvable problem to the problem of interest as the underlying parameter increases. When this parameter is kept small, we employ perturbation analysis to decouple the matrix equations that result from the optimality conditions, thereby rendering the unique optimal feedback gain. This solution is used to initialize a homotopy-based Newton’s method to find the optimal localized gain. To investigate the performance of localized controllers, we examine how the coherence of large-scale stochastically forced formations scales with the number of vehicles. We establish several explicit scaling relationships and show that the best performance is achieved by a localized controller that is both non-symmetric and spatially-varying
    corecore